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CONSTRUCTION OF REFINED APPLIED THEORIES FOR 
A SHELL OF ARBITRARY SHAPE* 

N. A. BAZAPJZNKO 

Basic equations of the theory of elasticity are given in a semi-orthogonal curVi- 
linear coordinate system in which one of the families of the coordinate surfaces is 
parallel to the middle surface of the shell. 

Symbolic notation of Lur'e /l/ is used to obtain a solution of the problem of 
the theory of elasticity for a shell, in terms of a series in powers of the normal 
coordinate. The solution is then used to reduce the three-dimensional problem to 
two dimensions and to express all characteristic features of the stress and deforma- 
tion states of the shell in terms of six functions, namely the coordinates of the 
displacement and stress vectors defined on the middle surface. Use of the first 
two terms of the series obtained yields an applied theory free of any hypotheses 
and intended for removing the external load from the front surface of the shell. A 
similar approach to the problem of constructing applied theories was first used in 
/2-44/ which made wide use of the resources of tensor analysis. 

1. Semiorthogonal curvilinear coordinate system. We introduce the following 
notation. V is the region of space occupied by the material of the shell, R is radius vector 
of the running point (2, y,z) of this region, S is the middle surface of the shell, r = r (a, p) 
is some orthogonalparametrizationofthis surface and nisthe unitvectornormaltothesurface S. 
Withinthe notationused, theequation 

R =r+Ilt (1.1) 

determines, in the region V, a curvilinear a, @,t-coordinate system. By virtue of (l.l)the 
arc length element ds is given by the quadratic differential form 

cl.? = dRZ = (dr + tdn + ndt)z (1.2) 

Let us consider three quadratic forms associated with the surface S: dr2, -drdn and doz. 
We have 

dr' = EduZ + GdfY, dn2 = -Hdrdn - k,k,dr2, -drdn = Lda2 + 2Mdad$ + NdfF (H = k, + kz) (1.3) 

Here k, and k, are the principal curvatures of the surface S, and E, G, L, M and Ndenotes 
the coefficients of the first and second quadratic form. Now, substituting (1.3) into the 
right-hand side of (1.2) and taking into account the fact that 

ma = k,ks - k,k,, H = k, + kp , k,=LIE, m= MI1/ET, k,= NIG (1.4) 

we obtain 

ds2 = gik dzidzk (a = x1, p z x2, t 3 5), g,, = E [(I - k.# + m2t21, g,, = G [(I - k# + m2t21 (1.5) 

6733 =I, gl,= m Jfz (HP - 2t), g,, = g,, = 0, g = det 11 gik 11 7 EG (1 - k,t)‘(l .- kzt)’ 

Here the quantities k, and m (ks and -m) are, respectively, the normal curvature and the geo- 
desic torsion of the surface Sin the direction of the coordinate line i3 = const (a = con&). 

If the coordinate grid (a, p) on S coincides with the lines of curvature, then the func- 
tion g1z = 0 and the a, fi, t- coordinate system will be orthogonal. In this connection we 
note the class of shells the middle surface of which is formed by the motion of a plane line 
1, (generatrix) along the spatial line 1, (directrix). 

Let 5 =X(U), y= y(u) and r0 = r,,(u) represent a natural parametrization of the lines I, 
and 1, respectively; no = no(v) and b, = b,(u) the unit vectors of the principal normal and 
binormal of the line I,, and k = k(u), T = z(u) its curvature and torsion. Then the para- 
metrization 

r (u, v) = r0 + n,,m, + born, , m, = x cos 11, + y sin Q, m,- = y cos + - z sin I$, 21, = j z (v) dv 

specifies, on the surface S,a coordinate grid (u, V) consisting of the lines of curvature, 
with the lines u F const being geodesic. In the u, v, t-coordinate system the quadratic 
form (1.5) has the form 

d.? = (1 - klt)2 du2 + G (1 - Ii&)’ du* + dt’, G = (1 - km$, k, = I” I y’, k, = (m2)u’ k / (1 - km,) 

2. Basic equations of the theory of elasticity in curvilinear coordinates 
Let us consider the second fundamental problem of the theory of elasticity when the values 
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of the vector of intensity of external forces p are given 
shell. The displacement vector U satisfies in the region 

(x - 1)rotrot U + grad div U = 0 (x = 

with the boundary condition S*given. 
Let us further consider the orthonormal local basis 

tangents to the coordinate lines x2,x3, and i, G i, x i, 
ate surface x1 = const. The unit vectors (iI, i,, i3) satisfy 

on the surface S*enclosing 
V the equilibrium equation 

1 i (2 - 2v)) 

the 

(2.1) 

4, L b where i, and i, are unit 

is the unit normal to the coordin- 
the relations 

e’ E 4 V/g,, 1 g, 
- 

e2 = --i,g,, I Vg.gz2 -t i, I 1/K, e3= i, 
(2.2) 

D’i, K i,z, - i,z,, D2i, = i,z, + i,z,, D3i, = i2zo 

D’i,.= i,z, + i,z,, D2i, = i,z, 1 i,z,, D3i, = -i,z, 

D’i 3= -i,z, - i,z,, D2i, = -i,z, - i,z,, D3i, = 0, V s $8 I axi E i,(D” 

D’ = I/g,, I g a I aa - (g,, I I/$!& i3 I a/3, 0’ = (V&-l ai@, D3 = a 1 at 

Zo==mGig,,, Zl = (ml [(l/z& - (g,, i l/i&‘l, Zd = -~_ 
-(ln I/g&t”z, = (b’?%i-’ (In l/g / g&‘, Z3 = g, + g, - Z,, gi = ki / (1 - kit) 

The functions 'Zi conform to the Peterson-Codacci equations 

0%~~ - Dlz, = 2z& + z2 (z, - z3), (z&’ = z1z4 i D”z, (2.3) 

Dlz, - D2z, = 2z,z, + z1 (z3 - z,), (z,)~’ = zb2 - z,,’ 

glg, = -z12 - zp2 - D’z, - D2z,, (z,,)t’ = 22,z, 

Let ok denote the stress vector at the surface with normal ik. Then the physical com- 
ponents of the stress tensor ~,k* can be found using the representation of the stress vector 
px in terms of the displacement vector U. We have 

pR=p (2D”U + i, x rotU + $& ik div U), (pk= $ &is, U = i us*&) 
(2.4) 

a=1 s=1 

Here v in the Poisson's ratio and p is the shear modulus. Now, taking into account the rela- 
tions (2.2), we obtain 

D’U = i, (D’u,* + uZ*zZ - u3*z3) + . . . (2.5) 

D2U = i, (D2u,* - uz*zl - us*zo) + i, (D2u,* + yl*zl - u3*z4) + . . 

D3U z=z i, [(u~*)~' - u,*z,l + i, [(u~*)~' + u~*z,l + 4 (k3*)t' 

3 

rot U=V x U = x (&, o1 = D2u3* - (u%*)~’ + uz*zq 
k=l 

o2 = (u,*)*’ - Dlu,* - 2u,*z, - u1*z3, o3 = 0 (u,*, - UI*) 

div U = v.u = I3 (ul*, uz*) + (u~*)~' - u3* (z3 i- z4), 0 (q, q) = (D’ + zJ q + (D2 + z,) W, (2.6) 

Substituting into (2.4) the corresponding quantities from (2.5) and (2.6) we obtain, for i, = 

i, , 
oal = (q*)t’ + ul*zcj + D’u,*,_ ~32 = (uZ*)t’ + uz*za + 2u,*z, + D%,* (2.7) 

%I = ;s (Us*)*’ + & LB (uI*, u,*) - us* (23 + zq)J 

where a,k = a,k* / t& are dimensionless stresses. Let us solve the equations (2.7) for the 
derivatives (u~*)~'. We have 

(~r*)~' = osl - ul*zQ - D’u,“, (h*)r = a32 - uz*zp -2u,*z, - D=u,* (2.8) 

(CL,*)*’ = (1 - x) d,, + (1 - 2x)ltl (U1*, us*) - us* (z3 + z,)l 
Replacing in (2.6) the derivative (ug*h' by its expression from (2.8), we obtain 

div 1J = (1 -x)8*, El* = ua3 + 2 18 (u,*, u2*) -ug* (z3 i- z4)l (2.9) 

when ik = i,, i, we obtain, from (2.4) with (2.5) and (2.9) taken into account, 

U 21 = (D’ - zl) u2* + (D2 - z2) ul* - 2u,*z, (2.10) 

U2% = 2D"u,* + 2u,*z, - 2u,*z, -t (2x - 1)8* 

U 11 = 2D’u,* -t 2uz*z, - 2u,*z, + (2x - 1) 8* 

To find rotrot U, we replace the coordinates uk* in (2.5) by the corresponding coordin- 

ates ok. We have 
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rot rotU= +_ Wkik, WI= D203--(mz)i + O2z4, w, = 
(2.11) 

k=l 
(OJt' -D'@, - 2~2% - qz3, w, = 8 (02, -01) 

Substituting (2.11) into (2.1), we arrive at the following equations of equilibrium in terms 
of the displacements: 

(x -1) Wk + D"div U = 0 Q = 1, 2, 3) (2.12) 

Finally, replacing in (2.12) the derivatives (zL~*)~' by the 

(2.8) and taking into account the relations (2.31, we obtain 

corresponding expressions 

(CT,&’ = (z* + 22,) a$!1 + 2u32zo - 2&&u,* + D28 (uZ*r 

-ICI*) + D1 (533 - 2x8*) + 2 (2303 - ZdD1) u3* 

(6,$ ; (z3 + 2%) 532 - 2g,g,u,* - D’0 (u,*, -ul*) + 

33 - 2x6*) + 2 (z,D1 - z3Dz) u3* 

(533)t’ = 2 (z3 + ZPW33 - x0*) - 0 (53,, 5.32) - 4g,w3* -t 
2 (z,D’ - z,D’ -t- z0z.j + ~123) ul* + 2 (z3D2 - zJI’ -I- ZOZI + z2zl) u3* 

(2.13) 

In what follows, we shall consider, instead of the system (2.12) of three second order 
differential equations, a system of six first order equations in the unknowns uk* and 03Fi3h.r 
consisting of the equations (2.8) and (2.131. 

3. Construction of applied theories. The variables uk* and dimensionless stresses 
CG~ are analytic functions of the coordinates of thepoints belonging to the region V. Con- 

sequently,they can be expanded into power series in terms of the coordinate 

(3.1) 

Then, differentiating with respect to t the left and right parts of the equations (2.8),(2.10) 

and (2.13) and calculating the resulting relations at t ti 0, we obtain an infinite system of 
recurrent equations fortheunknown coefficients appearing in the series (3.1). Solving the 
system mentioned above with help of a symbolic notation, we can write the unknown coefficients 
as the outcome of application of certain operators Ai+.. .rBik,s to the displacements Uj = 

uj* ta7 PI O) 
and stresses ~j= cja(u, p, 0) given at the middle surface. 

Thus we arrive at the expansions of the form 

uk* = 16& ~j- 5 l"(A$,,uj + Bi, @j), U prl= i0 tS(Ab,,suj + BjPg,scj) (3.2) 
a=1 

(3.3) 

Writing out explicitly the first terms of the series (3.2) and (3.31, we obtain 

Ul * = Ul + t (ITI - &u3 - k,u,) + . . . 

% * = u2 + t (a, - Q3 - 2mu, - k@UJ + . . . 

u3 * = u3 -I- t {-f,a, - c4 [(a, + a) u1 + (a, + b) u3 -Hti,l} + . . l 

cr 11 = (4x8, + 2c,a) U1 + (2c,B, + 43cb) 11, + (2k, - 4xH) u3 + 

c,u, + t (2 Iv2 (c,b - co&J + 2xa (k, - kp) - 2xAH.z’ + 

Bma'l u1 -t- (c& + C&) (3, + 2[c* (k, - ks) a, + 

c,m(a - a,) t-B (kp - 2xH)p'l ~1~ + 2 [k, (k, -22xH) - 3m2 - 
aI2 - b8, - c,Al u3 + (c& + cgb) ~2 + &a,} + . . 

(3.4) 

(3.5) 

5 33 = (2@, + 4xa) u1 + (4x8, + 2cJJ) u2 + (2kz - 4xff) u3 + 

c,5, -I- t (2 [c8m (b - a,) + c, (lip - ka) 8, + A (k, - 
2xH),‘l u1 + (cat+ + w) o1 + 2 Ic, (kp - ka) b + c,m (a - 
a,) -I- B (k, - 2xf&‘l u2 + (cd, -I- c4b) 5, t- 2 [m2 + 
kp (k, - 2xH) - c,A - at’, - 8,21 u3 + c&(~a} + . . . 

u12 = (8, - b) u1 + (81 - a) U, - 2mu, + t {[(/ifi - k) 82 + 
2m (c.& + csa) - Am,’ - B Vi&'1 ~1 + [(kc, - &A & + 
m (4x3, + 2~0) - Bmp’ - A (k&‘l u2 + 2 la& - &al - 

nz (2xH + k-p - k,)l UQ + (a, - b) 01 t- (a, - a) CQ? -5 
C?rnO.Q) + . . . 

031 = 01 + 1 {(H + li:a) Ul + 2ma, - c4dlCI, - [iI, (a, + 6) + 
4x31 (3, + a) + 2k&,l U1 + la, (a, + a) -4X&(& + b)J uz+ 

[(4xH - 2kfi) & + 2mi), + 4xAH,'] us} + t2 (Ifsd, - 
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cd4 - %a,& + %I us - [f, (81’ + aa,) + ‘I, (az2 + b&t) + 
%I 01 - I(wk + f&p) 4 + c,ma, + %I us - 12x (H + 
Z/r,) d12 + (kp + ‘/,H) az2 + 8xma,al + QJ u1 + [c,mtY12 - 

(c,lka + ‘i,kp) aza, - c8gmaz2 + %I u2 + 12x&A + %I us) + 
t3 {&&A $- &I ~~ - Im&2 + (2x/c, + &kp) d,& + 
m (1 + 4.4 a22 + %I o2 - [(cd, + d&J aI2 + m (2 + 
&a) MI + (k~ + ‘i,lc,) 6’ + %I UI + P/MIA (a, + a) + 
‘/,&A (a, + b) + &I UI + P/+&A (a, + b) - V&A (a, + 
a) + %I u2 + I(&& + 1i,kfi) aI3 + 2m (d67d2d12 + &a27 + 

(d&x i- k,) &‘dl + Q,l ~3) + . . . 

u - C% + t {(H + kp) U2 - C&U~ + [a1 (d, i- b) - 32 - 
4xa, (a, + 41 u1 - [a, (a, + a) + 4xa, (a, + b) + 2W,l 24 + 
[(4xH - 2k,) a, + 2maI + 4xBH;l Us) + t2{[bal - 

haa, - xd,aI + Q,l u1 - w, (a12 + aa,) + f, (a** + ba,) + 

%I u2 - V4maI + (f& + c&3) a, + %I u3 + Lm .(2xha - 
czaly - (v,k, + c,~Q) d,al + ~~1 u1 - uk, + l&H) a,” + 
2md,aI + 2x (H + 2kp) a,2 + Q,l u2 + 12x&A + 5111 4) + 
t3 {[d&A + %I us -- I@, + ‘izkg) a? + m (2 + d4) MI t- 
(dslca + cBke) az* + %)I up - [de42 + (Zxfsp + d&A 44 i- 

%I 01 + [V3x8,A (a, + a) - l/&A (a, + b) + ‘&I ~1 + 
P/,&A (a, + a) + 4/3~d,A (8, + b) t Q,l u2 i- Im (dd13 + 
did%%) + (k, $- &ok& d$? + (‘/,k, $- di&) h3 t 921 us) + . . . 

U ~ u3 + t {[2ks - 4x11) dl + 2m (b - d,) $ a (2k, - 33 - 

4xH)l ~1 _1- [(2k, - 4xH) 8, + 2m (a - al) + b (2ke - 
4xH)l u, + (4xH2 - 4klk,) us - (a, + a) ul - (i3, + 
b) us - c,Ho,} + t2 {IfsA + !&I us - 12m& + (2kB + 
f,W 4 + %I (TV - Ok, + f,H) a, i- 2ma, + %I ul + 
I2xA (3, + a) + %I ~1 + 12xA (a, + b) + %I ~2 - 
14% (AH,‘a, + RH;a,) + Qol ug} + t3 {I&A (a, + a) -t 
911 01 + [&A (a, + b) + BJu, + ka (k, i_ l.‘JS) a? + 
cspma,al + c,(kg + V*H) a22 + QJ u3 - P/,XAA + S&l 1~~ + 
I-mdd,3 -t 2 (c,,lc, + d,k,) a2a12 + m (6x + d,a) az2a1 + 
(d,aH + d,,k,) a,’ + ‘41 ~2 + [(&H + 4s k,) h3 + 
m (6x + d34) aeaz2 + 2 (d,k, i- C,,kp) a2% - mdoas3 -!- n,l ul) + . . . 

(A = aI2 + aa, + as2 + ba,, (Dl) I,_, = Aa I aa z a, 

(02) It+ = Ba / ag = a,) 

Here 53t denote the operators of order lower than those given (li is the order of the operator 

Qk)t while a and b are the geodesic curvatures of the coordinate lines and the middle snr- 
face. We also use the following set of notations: 

1 / 1/E = A, 1 / VG F B, (2,) 1~0 = -A (In B)a’ = a, ,(z2) llzo = --B (In A)s’ = b 

cr, = (1 + T) x - 3 + s 1 2, d,, = c,, 13, c,~ z cg, d,, 3 d,, coa = f, 
In addition to (2.3), we note other relationships which facilitate the derivation of the 

expansions (3.4) and (3.5). We have 

(D')t' = z,D’ + 2z&‘, (0%’ = zrD2, (z&’ = z2zp - D2z, 

(ZO) 11~0 = m, (~3) lt=o = k,, (~4) It=o = kp, (D’ + zl) D2 s (D2 +- z2) D’ 
Further, we introduce into our discussion the specific forces TP,SB,,,NP and moments G,, fl,, 
appearing on the coordinate cross-sections zP = const @#q = 1,2) of the shell. We have 

T,iPo -t S,,i,, - N,i, = ( j _-h w) l/C dt) (V/g,,j-’ 1~. bO=(ipb (3.6) 

(-l)q(H,,i,O + G&) = (jh (ucP) x L)tI/g,dt) (I/~Q)-'\,=, 

U(1) = P 7 Uw = iv g P? - g,,p,) /l/,ong,, ( i, = (1 - 4) ho -t (- ljq m&j 1/G/g,, (p#q = 1, 2) 

Here qPj is the stress vector at the surface zp = const. 

Taking into account (1.5) and (2.4) we obtain, from (3.6), 
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t t2 I’i&m (k,, - k,,) uq3 + m2up3 (% - $4 + . . .} dt (3.7) 
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T,=pql,df, S,,=p s’ .+f,,dt, H,,=p l M,,tdt , Gp=-p j L,tdt 
-_)1 -h -Jl 

hfqp = qp + t [61,muqq + (-1)’ muRP - k,,o,,l + . . . , (QIL == /~a, k,, = k& 

L, = opp + t l(26, - 1) mugp - k,, uppI + . . . , (1 + (-1Y = 6,) 

Now replacing in (3.7) the stresses uPpk by the corresponding expressions from (3.4) and (3.5) 
and integrating, we obtain the following expressions in powers of h’: 

N, = 2ph [--CT, - ‘l&2 (Cj,,,Uj + &sj) + . . .] 

Spp = 2ph (co + h?‘&,,% + . ..) 

(3.8) 

T, = 4ph (wp + QP + fbus + h’T,,a + . ..) 

H,, = “/@ [T + ‘l,k,, 0 + 2m (w + GEP) + Vz (3, - b)x 

01 + ‘1, (8, - a) (~2 + mc303 + h*H,,,a + . ..I 

G, = --4i,ph3 [w, + COG, + (k,, - k,,)(wp + & + 

mm + (fd% + f& 0, + Us4 + hk:) uq + (f&p - 
flkqq) u, f h2Gp,, + . . . 1 (kl* = a, kz* = b) 

up = Qp + k,*u, - k,,u,, 0 = (a, - b) u1 + (8, - a) u2 - 2mu, 

T = kg (a - i3,) u2 f ka (b - 3,) u1 - m (~1 i- Ez) - u&m - 

u&m + (MI - W,) u3 

(3.9) 

xp = ‘/,m [(k,* + aq) up - (kp* + a,) ~~1 - k,* (&+s -I- 

kpnup + mup) - i$, (%G + kppup + m%) 

CL,, = AS,,, - ~,,A&,I + bmA!,,l 

where el, C&Q and xr,r,$ are the components of the tangential and flexural deformation of 

the middle surface, respectively. 

The expansions (3.2) and (3.8) are of use in constructing a number of applied theories 

of various purpose and accuracy. Let us denote by r~ and r, the parts of the surface S*de- 

fined, respectively, by the equations t=&h and ~(a, p)= 0 where h is the half-thickness 
of the shell. Theories which leave the boundary of rl stress-free and allow the conditions 

at the boundary of r, to be satisfied are not dealt with here (see e.g. /5/J. Below we 

present a method of constructing the theories which will ensure that the conditions at the 

boundary of TI are satisfied without worrying about the boundary conditions at the boundary 

of rz. 

Let the vector g defined at the surface rI have the form 

q+ = i qk+ik when t = + h, q- = ki1&k when t=-h 
k=1 

By virtue of (3.3) we write the boundary conditions on rl in the form 

and this yields the equivalent system 

Qk = (QlC+ - '?-) / 2P = ok + h* (A$k, &j $- Bik, +Tj) + . . * (3.10) 

PI, = (a' + qk-)/ 2P = h (Aik, IUj + &k. IOj) i- h3 (A:k, 3Uj + B$, +Sj) + . . . 
In the case of small h, we shall seek the unknown uj and uj in the form of the asympto- 

tic expansions 

rhj = 3 hs-@, uj= 2 h‘uj”’ 
s=o s=o 

(3.11) 

Substituting the expansions (3.11) into the equations (3.10) and equating the terms accompany- 

ing (F;" (s = 0, 1, 2, . ..). we obtain a system of recurrence relations for the functions u!"' and 

a: . The relations arising at s = 0 and ldefine an applied theory with an err,: of the 
order of h2 as comwared with unity. We have 
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Aik go;“’ = P k, Ait, ,u:’ = - B;k. IQ~ t oj,f’ = Qk, I$’ = - & +jo) (k =1, 2, 3) (3.12) 

Equations (3.12) can be written in a different form by taking into account the relations 

A;,,1 Uj = 2kp* (&q - Ep) - 28, (c~Ep + CaEp) - (8, + 2kg*) w 

A&L, = 2 (k,E, + @I) - 2c,H (EI + Ez) - 2~~0 (p # 4 ~1.2) 
Now, substituting (3.11) into the expansions (3.8) and taking into account (3.12), we obtain 

T, = 4p [C,E, (‘1 + CIE~(‘) + h (CaEp(‘) + C&,$‘) + f&) + .] (3.13) 

s,, = 2p (o(O) + ho(‘) + .) 

N, = 2ph r--Q, - h (V3q,@) - V3k,,P, + ‘/,G,mP,) + . .I 

H,, = */+~h’ {t(l) + l/zkpp~(o) f 2m (C6Eq@) + CjEp@)) i_ 

h [dl) + Vpkpp&) + 2n1 (cgER 0) + C,E,(‘L) + ‘1, (3, - b) QI + 

V2 (6 - a) Q2 + mcsQsl i- . .) 

G, = -Vaph2 {c~x~,(~) + c&0) + (k,, - k,,)(c,e,@) + C&J)) i- 
mdo) + h [c6xp(l) + c4x,(‘) + mu(‘) + (k,, - /is,) (C&~(I) -t 

dq) + (f a , B -t f&p*) Qp + W, + f&q*) Q, + (f~k,, --fvW 431 i- . . 1 

where the quantities E&P), . . ., xP@) are determined in terms of the functions Uj(") according to 

the formulas (3.9). In addition we have the expansions 

up0 = /Z-$(O) + up(l) - 5 (QL$~) + kppu,@) + rnq@)) + . 
(3.14) 

Uzo = h-%LJ@) + UQ(') - CC4 (El (0) + ep) + . . . 

(5 = t / h, U = uIoiIo + uzoiza -k u,%) 
Relations (3.9), (3.12) and asymptotic expansions (3.13), (3.14) with an error of the 

order of h2 compared with unity, together form a complete refined system of "two-dimensional" 

equations of the theory of shells. The applied theory constructed enables us to form an 
opinion regarding the accuracy of the theories of thin shells used. In particular, we shall 
find how the equations (3.12)- (3.14) agree with the equations of the Gol'denveizer iterative 

theory of shells, which can be written using the notation adopted in this paper, in the form 

(2&' (k,,N, + ntNg) - hA& 1 IL, = - P, + IL (HQp - c&Q3) 3. . (3.15) 

(2~))~ [(a, + a) N, + (a, + b)‘N,l + hA;,, 1 u, = Pa + hWQ3 i 
(2p)-'N, + h3F11]Uj = - BQ,+h" (HP, - d,apPa) + (p+q= 1.2) 

where Fpi are known operators. The relations (3.15) can be arrived at when the forces TTI, S,, 
and moments G,,Hqp defined in the monograph /6/ for the case of tri-orthogonal coordinate 

system by the equations 

TP = 4Ph (QED i QEq + f&s), S,, = Zpho, H,, = 4/~@~3 (7 + ‘i,kpo) (3.16) 

G, = _ 4/+k3 (c,xP + ~4%~ + C( (kp - k4) E%, + cq (c,ll - k&E, i- E.J 7 h-‘f,Ps1 3 (P # 4 y 1. 2, km = km “L = 0) 

are expressed, in the equations of equilibrium, in terms of the displacements U, of the middle 

surface, and the terms containing the intersecting conditions N, are retained. 

Seeking the unknown ~1 and N, in the form of expansions 

and substituting (3.17) into (3.15), we obtain a system of equations which yield, at small /L, 

the relations 

A& r"j") = P,, Aik r"jl) = - E&Q, (k = 1, 2, 3), N, = 2yh [-Q>, - in (I;,+') - HP,, 7m ~&PI) -t_ .] (3.18) 

If the functions u>(') and z,(~) are subjected to the same boundary conditions, then, equating 

(3.12) and (3.13) with (3.18) we can establish that u,(')= c,(~)(s=O, 1), while the only co- 

incident terms in the intersecting forces NT, are the principal terms of the corresponding 

asymptotic expansions. 

Further, substituting (3.17) into (3.16) and taking into account 

.j(') = “j@) (s = o,i), f&I’s = c4 (kpEq@) + k,Ep"') - C&H (&p(O) + Ey@)) 
we obtain 

H q,, = 4/&Z [,W ~; I/? kp&‘) -r II (r(l) 1~ ‘1, k,,o”‘) + . ..I (3.19) 

T, = 4P [%EP (O) + CIEi, (0) ,_ h (‘&,,(l) (. c,p + fjQ3) + . ..I. s,, = 2p (a(“) -f ho(~) + . .) 

G, = -V&$ (C&,(O) -i_ c4xu(o) I (!%,a - k,) (C&J”) I- C&c, (0) ) / 

h.[cb&) +c4xrI~‘) m+ co (kp --k,) El,(‘) + c4 (c,H - k,i (#+&,“))b- ..d, (,J + ‘I = 1, 2) 

Equating (3.19) with (3.13) we find, that for the case ~1 0. k,,,, -k,, , the forces T, and S,,V 

determined according to various theories, show the same error of the order of h" compared with 
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unity. As regards the moments G, and HPp, here we observe that only the principal terms of 

the corresponding expansions coincide. Finally, comparing the displacements ujO described 

by the iterative theory with the expansions (3.14), we can establish that they both are of 

the same accuracy. 

Thus, comparing the theory constructed here with the Gol'denveizer's iterative theory, 

we find that the accuracy of determination of the quantities N,,G, and Hpp is improved by 

one order of magnitude. 

REFERENCES 

1. LUR'E A-I., Three-dimensional Problems of the Theory of Elasticity. Moscow, Gostekhizdat, 

1955. 

2. KIL'CHEVSKII N.A., Generalization of the modern shell theory, PMM Vo1.2, No.4, 1939. 

3. KIL'CHEVSKII M.O., Basic equations of shell theory and some methods of their integration. 

Akad. Nauk Ukrainian SSR, No.6, 1941. 

4. KIL'CHEVSKII N-A., Principles of the Analytical Mechanics of Shells. Vol.1, Kiev, Izd, 

Akad. Nauk Ukrainian SSR, 1963. 

5. BAZARENKO N.A., and VOROVICH I.I., Analysis of the three-dimensional states of stress and 

strain of circular cylindrical shells. Construction of refined applied theories. PMM 

Vo1.33, No.3, 1969. 

6. GOL'DENVEIZER A.L., Theory of Thin Elastic Shells. English translation, Pergamon Press, 

Book No. 09561, 1961. 

Translated by L.K. 


